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Collaborators in This Work

� Trilinos Team: 
� David Day: Preconditioners and orderings.
� Kevin Long: Abstract classes, aggregate 

preconditioners.
� Xyce Team: 

� Rob Hoekstra: Parallel data re-distribution.
� Scott Hutchinson: Adaptive solver strategies.



Outline

Part 1: Adaptive Solver Strategies.
� Solver Overview and Strategies.
� Preconditioners focus.
� Results.
Part 2: TSF classes for aggregate preconditioners.
� Overview.
� Components.
� Availability.



� Sandia�s multifaceted solver project.
� Encompasses efforts in these solver 

areas: 
� Linear (AztecOO, Komplex).
� Preconditioners (ML, IFPACK).
� Eigen (Anasazi).
� Nonlinear and time dep (NOX). 

� Petra matrix/vector classes:
� All Trilinos solvers use Petra objects.
� Solver components compatible, 

interoperable.

� Versions of Petra, AztecOO, 
Komplex, ML, IFPACK and NOX 
are available (under LGPL).

� AztecOO, Petra, IFPACK in:
� Sierra, Xyce, Goma/Aria.
� Others: TAO, Sundance,�
� Available via ESI, FEI, CCA.

� ML: In ALEGRA, others.
� NOX: In MPSalsa, Xyce, FEAP, 

Salinas, Sierra, Goma/Aria.

� More information:
http://www.cs.sandia.gov/Trilinos

About Trilinos1 Trilinos Status

� TSF: Abstract Framework
� Powerful aggregation 

capabilites.
� Facilitates external 

component integration.

1Trilinos, pronounced tree-lee-nose, is
a Greek word that, loosely translated, 
means a �string of pearls�.

Trilinos Snapshot



Basic Solver Strategy

� Domain decomposition:
� Overlapping additive Schwarz.
� Problems with dense rows.

� Scaling of entries.
� Typically row sum scaling.
� Want to explore asymmetric row/col scaling.

� Stabilized incomplete factorizations on subdomains.
� Primarily use ILUT on matrix B, where:
� B is dual threshold a priori diagonal perturbation of original matrix 

A.
� Non-restarted GMRES.

� Classical GS with refinement.
� Scalable, very robust, potentially expensive.



Motivations for This Approach

�Heritage of writing solvers for CFD apps.
� Want to leverage that investment.

�Direct sparse solvers are a problem:
� Serial solvers are OK (not great).
� Distributed memory solvers are problematic:

� Third party codes are not well-supported (realize this 
point is contentious).

� Little incentive to develop in-house expertise.
� Most issues are related to software reliability, 

extensibility and maintainability.
�Machinery is just coming into place to 
implement KKT preconditioners.



Other Ideas Considered and Considering
� Textbook ILU and related preconditioners.

� Failed.
� Sub-optimal iterative methods (e.g., Bi-CGSTAB).

� Unreliable convergence.
� Column Reordering (Duff-Koster):

� Used to find better pivots for ILUT.
� Worked some times, but not as well as current 

approach.
� KKT preconditioners.
� Serial or moderately parallel direct solvers, even 

when running on many processors.



Preconditioned Krylov Solvers:
Sources of Robustness Difficulties

� In our experience iterative solvers fail for two 
primary reasons:
� Preconditioner is too weak:

� Iterative methods stagnates or diverges.
� Note: For large parallel computers this can often be fixed by 

increasing the fill of the factors.  (But larger fill can lead to 
second type of problem�)

� Preconditioner is too ill-conditioned:
� We often find that tough problems need large-fill ILU factors.
� However, these factors are often extremely ill-conditioned.



Ill-conditioned Factors

Ill-conditioned factors come from two major 
sources:
� Source 1: Well-conditioned, poorly ordered 

matrices.
� These matrices are not poorly conditioned.
� May have zero diagonal entries.
� Problem: Straight-forward incomplete factorization 

implementations suffer.
� Factorization fails (zero pivot).
� Factors are poorly conditioned.

� Remedy:  Can usually be fixed with proper matrix 
reordering, either a priori or dynamic.

� Used Duff-Koster here with some improvement.



Ill-conditioned Factors (cont)

� Source 2: Truly ill-conditioned problems.
� Regardless of ordering or scaling, factorization of 

user matrix is ill-conditioned.
� Observations (general):

� Large-fill incomplete factorizations of ill-conditioned 
matrices will almost invariably be ill-conditioned.

� In this case, the more accurate the factorization is the 
more ill-conditioned it is.

� Remedy:
� First we need to detect the problem.

� At the completion of the factorization, compute a 
condition number estimate.



Estimating Preconditioner Accuracy

� Applying an ILU preconditioner involves solving a 
lower/upper triangular system LUy = x:

Solve Lz = x.
Solve Uy = z.

� The accuracy of this calculation is a function of:
� Machine Precision = 2-53 ≈ 10-16.
� Condition number of the operator (M = LU in this case).
� Cond(M) approaching 1016 means useless result.
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Lower Bound on Inf-norm Condition Number

$ $

$

1

1

1
|| || 1

1

1

( ) || || || ||
                || ||
                max || ||

                || || ,     (1,1,...,1)

                || ( ) ||

x

T

cond M M M
M

M x

M x x

LU x

∞

−
∞ ∞ ∞

−
∞

−
= ∞

−
∞

−
∞

=

≥

=

≥ =

=
� Idea (not new): 

� Form vector x of all 1�s.
� Call standard solve routine to find y s.t. LUy = x.
� Find max abs value of y values.

� Result: A reasonable approximation for cond(LU) writing almost 
no extra software.



Remedies for Ill-conditioned Factors

� First: Detect problem: 
� condest() method computes lower bound on condition number.
� condest() = 0 means unusable factorization: NaNs present.
� condest() > threshold then declare factorization �bad�.

� Next: Given bad factorization, attempt to make better:
� Define a modification of the original matrix that is better conditioned.

� Modified matrix is �nearby� original matrix. Compute and use factorization of 
modified matrix.

� Block matrix partitioning can help (not used for circuit problems).
� We have block diagonal pivots.
� Invert the blocks, thus use pivoting within the block. 
� Use SVD on block diagonal pivots. 



A priori point diagonal perturbations

� Idea: Compute ILU factor of a matrix B that is 
�nearby� original matrix A, but better 
conditioned.  (Generalization of Manteuffel shift)

� Sets up a continuum of preconditioners between 
accurate but poorly conditioned ILU factor and 
Jacobi scaling.

� B differs from A only 
on diagonal:

� Forces:
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Choosing thresholds

� Now issue becomes: What values to pick for 
thresholds.
� Too small: ILU factors are garbage.
� Too large: Perturbed factors are poor 

approximations to original matrix.
� Answer: It�s still an art.
� Partial solution: Semi-automated adaptive 

procedures.
� Ongoing work�.



AdaptiveIterate() Method
// Recompute prec if Krylov subspc ill-conditioned

while ( curTrial<NumTrials &&  
(illConditioned || breakdown)) {

SetNextThresholdPair(curTrial);
ConstructPreconditioner(condest); curTrial++;
Iterate(MaxIters, Tolerance);  
NumSolveAttempts++;
if (!(oldResid>newResid)) X_ = Xold; 

}

// Check for other failure exit states, fix if possible

if (lossOfOrthogonality) 
Try to solve one more time only�

else if (maxits)  Try more robust preconditioner       
if (fill<curMaxFill)  

double amount of fill, reset curTrial = 0; 
else if (drop tolerance >0)  

set drop tolerance = 0.0; curTrial = 0; 
else if (kspace<curMaxKspace) 

double kspace and try again

} // End of Master �while� loop

AdaptiveIterate(int MaxIters, 
int MaxSolveAttempts, 
double Tolerance)

// Master "while" loop
while (!normalStop &&

NumSolveAttempts<MaxSolveAttempts) {

//Find preconditioner with condest < threshold

while ( curTrial<NumTrials &&
condest>=condestThreshold) {

SetNextThresholdPair(curTrial);
ConstructPreconditioner(condest); curTrial++;

}

// Try solver now

Iterate(MaxIters, Tolerance);
NumSolveAttempts++;

If (!(oldResid>newResid)) X_ = Xold;



Test Problems

� RHP:
� Eqs:25187 
� NNZ:258265

� Hutch3:
� Eqs:32634 
� NNZ:153390



Platform: Beowulf Cluster

Cluster specs:
� 8 nodes.
� Each node:

� Uni-processor 1.4 GHz Athlons.
� 1 GB DDR RAM.

� 100 Mbit/s network switch.
� Redhat Linux 7.1.
� GCC compilers.  
� LAM MPI.



Solvers
� SuperLU:

� Standard Serial Distribution.
� Minimum Degree Reordering (AT + A pattern).

� AztecOO:
� ILUT(r,d).

� r � ratio of fill applied row-by-row. r = 1.0.
� d � drop tolerance. d = 0.01.

� Non-restarted GMRES, classical Gram-Schmidt with 
refinement.

� AztecOO with AdaptiveIterate Method:
� Same as AztecOO but adapt to problems.



Results ( Time in secs)

8.60.060.398.1Hutch3

14.40.188.75.2RHP

TotalSolve TimeFactor TimeReordering TimeProblem
SuperLU

0.121.02 (10-8)10-2Hutch3

N/A1.0NC (NaNs)0.0Hutch3

0.161.03 (10-12)10-2RHP

TimeFillIters (Res)Drop ToleranceProblem
AztecOO



Adaptive Results: 
Hutch3 (last case above)

Set

α= 10-12

Action

0.23

Time

Condest not < 
Condest thresh 

None0.0 (NaNs 
in factor)

Converge3 (10-8)109

ResultIters (Res)Condest

Note that matrix is singular (as is RHP):
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Parallel Adaptive Results 
(Hutch3: 2 and 8 PEs)

Set ρ = 10-2Hessenberg 
Ill-conditioned

3 (100)1012

Set α = 10-12

Action

0.55

Time

Condest not <
Condest thresh 

Noneinf

Converged11 (10-7)105

ResultIters (Res)Max Condest

Set ρ = 10-2Hessenberg 
Ill-conditioned

1 (100)1012

Set α = 10-12

Action

0.35

Time

Condest not <
Condest thresh 

Noneinf

Converged10 (10-7)102

ResultIters (Res)Max Condest



AdaptiveIterate Summary

� ILUT/GMRES can be effective for Xyce 
problems.

�Unpredictable behavior is chronic issue.
�Use of simple adaptive methods can 
minimize user intervention incidents.

� Issue becomes even more important in 
parallel.



Trilinos Solver Framework (TSF)

� Epetra, AztecOO, Ifpack, ML, etc.
PETSc, SuperLU, Hypre, HSL,
ScaLapack

� TSF is an abstract class hierarchy:
� Provides uniform API to solvers.
� Allows integration of many solvers via 

implementation of abstract classes.
� Provides compositional classes.

� Similar to HCL.

Lots of good solver
components available



Sample TSF Class Category: TSFLinearOperator

Constructors
TSFLinearOperator () 

empty ctor constructs a null linear operator.

TSFLinearOperator (TSFLinearOperatorBase *ptr) 
create a TSFLinearOperator from a pointer to a subtype.

Introspection methods
const TSFVectorSpace& domain () const 

return domain space.

const TSFVectorSpace& range () const 
return range space.

bool isZeroOperator () const 
am I a zero operator?

Block structure information
int numBlockRows () const 

get the number of block rows.

int numBlockCols () const 
get the number of block columns.

TSFLinearOperator getBlock (int i, int j) const 
get the (i,j)-th submatrix of a block operator.

TSFLinearOperator& setBlock (int i, int j, const
TSFLinearOperator &sub) 

set the (i,j)-th submatrix of a block 
operator

Application of forward, inverse, adjoint,and
adjoint inverse operators

void apply (const TSFVector &arg, TSFVector &out) const 
apply the operator to a vector.

void applyInverse (const TSFVector &arg, TSFVector &out) const 
apply the operator's inverse to a vector.

void applyInverse (const TSFLinearSolver &solver, const TSFVector
&arg, TSFVector &out) const 

apply the operator's inverse to a vector, using the specified 
solver.

void applyAdjoint (const TSFVector &arg, TSFVector &out) const 
apply the operator's adjoint to a vector.

void applyInverseAdjoint (const TSFVector &arg, TSFVector &out) 
const 

apply the operator's inverse to a vector.

void applyInverseAdjoint (const TSFLinearSolver &solver, const 
TSFVector &arg, TSFVector &out) const 

apply the operator's inverse to a vector, using the specified 
solver.



LinearOperator and LinearOperatorBase

� TSFLinearOperator:
� Has smart pointer to 

TSFLinearOperatorBase class.
� Concrete class, but all methods 

implemented via identical 
methods in base class 
implementation.

� Advantages:
� Memory management 

transparent.
� Can use Matlab-like notation.

� Disadvantage:
� Must manually maintain mirror 

set of methods.



Some LinearOperator Implementations

� Concrete Implementations:
TSFPetraMatrix (const TSFVectorSpace &domain, const TSFVectorSpace &range) 

� Aggregate Implementations:
TSFComposedOperator (const TSFLinearOperator &left, const TSFLinearOperator &right)
TSFInverseOperator (const TSFLinearOperator &op, const TSFLinearSolver &solver=TSFLinearSolver()) 
TSFSumOperator (const TSFLinearOperator &left, const TSFLinearOperator &right, bool subtraction=false) 



Other Primary TSF Classes

� All Primary TSF classes follow similar model:
� User class with smart pointer attribute.
� Shadow base class.
� One or more implementations of base class.

� Primary classes:
� Vector Space.
� Linear Operator.
� Vector/MultiVector.
� Linear Problem.



Aggregate Operator Construction

� TSF facilitates implicit (and explicit) construction 
of operators:
� Partitioned (block):

� Composite:

� Sum:

� Inverse:

� Others: Zero, Identity, Transpose, �
� Recursively.

0
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Aggregate Construction of Other Classes

y
x

z
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� Block Vectors/MultiVectors:

� Implicit Vectors/Multivectors:

� Multi-tolerance stopping criteria:
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Block Preconditioner Tools
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� Many systems are of the form:

� Note that:

� Precondition by:
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KKTRightPreconditionerFactory::createPreconditioner(const TSFLinearOperator& A) {

TSFLinearOperator F = A.getBlock(0,0); // Pointer to upper left block of A
TSFPreconditionerFactory pf = new ILUKPreconditionerFactory(1); // IFPACK parallel ILU(1)
TSFPreconditioner fp = pf.createPreconditioner(F);
TSFLinearOperator Finv = fp.left();

TSFLinearOperator B = A.getBlock(0,1); TSFLinearOperator C = A.getBlock(1,0);

TSFLinearOperator I00 = new TSFIdentityOperator(F.domain());
TSFLinearOperator I11= new TSFIdentityOperator(Bt.domain());
TSFLinearOperator Sinv = new TSFSomethingSpecial(C,A,B); // Schur compliment approximation

TSFLinearOperator P1 = new TSFBlockLinearOperator(A.domain(), A.range());
TSFLinearOperator P2 = new TSFBlockLinearOperator(A.domain(), A.range());
TSFLinearOperator P3 = new TSFBlockLinearOperator(A.domain(), A.range());

P1.setBlock(0, 0, Finv);   P1.setBlock(1, 1, I11);

P2.setBlock(0, 0, I00); P2.setBlock(0, 1, -B); P2.setBlock(1, 1, I11);

P3.setBlock(0, 0, I00); P3.setBlock(1, 1, Sinv);

return new GenericRightPreconditioner(P1*P2*P3);
}



Conclusions

� Direct solvers are essential but problematic:
� No internal expertise (hard to justify).
� How to develop/support special features in 3rd party codes?
� Distributed solvers are (so far) unsatisfactory.

� Careful use of preconditioned Krylov methods can be useful:
� Textbook varieties will fail.
� Dealing with ill-conditioned factors is essential.
� Good parallel robust GMRES is important.
� Some kind of adaptive strategy seems essential.

� Aggregate preconditioners are next area of study:
� Tools are in place.
� Hope to learn about possible formulations at this meeting.



Trilinos and the Outside World
� ESI (Equation Solver Interface):

de facto standard solver interface.
!Epetra and AztecOO provided the first ESI-compliant implementation 

(thanks to Alan Williams).
� TAO (Toolkit for Advanced Optimization):

Argonne optimization package.
!Epetra/AztecOO are being used (via ESI interface) for TAO solver

services, along with PETSc implementation of ESI.
� CCA (Common Component Architecture):

Community effort to develop scientific SW components.
!Epetra/AztecOO is a CCA solver component.

� Public Release of Trilinos/Epetra:
!We will release Trilinos/Epetra this summer.
!Using LGPL for licensing.
!ML, IFPACK , AztecOO, Komplex, Anasazi , NOX will be (or are) going 

through the same release process.
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